Answer:
Option A
Explanation:
Let the distance be p when velocity is u and acceleration $\alpha$.
Let the distance q when velocity is v and acceleration $\beta$.
If $\omega$ is the angular frequency , then
$ \alpha=\omega^{2} p $ ans $\beta=\omega^{2} q$
$\therefore$ $\alpha +\beta $= $\omega ^{2} (p+q)$ ........(i)
Also, $u^{2}=\omega ^{2} A^{2}-\omega ^{2} p^{2}$
and $v^{2}=\omega ^{2} A^{2}-\omega ^{2} q^{2}$
$\Rightarrow$ $ v^{2}-u^{2}= \omega ^{2}(p^{2}-q^{2})$
$ v^{2}-u^{2}= \omega ^{2}(p^{}-q^{})(p+q)$ .........(ii)
by Eqs .(i) and (ii), we get
$v^{2}-u^{2}= (p^{}-q^{})(\alpha+\beta)$
$\therefore$ $ p-q= \frac{v^{2}-u^{2}}{\alpha+\beta}$ or $q-p= \frac{u^{2}-v^{2}}{\alpha+\beta}$